Active Sentiment Domain Adaptation
نویسندگان
چکیده
Domain adaptation is an important technology to handle domain dependence problem in sentiment analysis field. Existing methods usually rely on sentiment classifiers trained in source domains. However, their performance may heavily decline if the distributions of sentiment features in source and target domains have significant difference. In this paper, we propose an active sentiment domain adaptation approach to handle this problem. Instead of the source domain sentiment classifiers, our approach adapts the general-purpose sentiment lexicons to target domain with the help of a small number of labeled samples which are selected and annotated in an active learning mode, as well as the domain-specific sentiment similarities among words mined from unlabeled samples of target domain. A unified model is proposed to fuse different types of sentiment information and train sentiment classifier for target domain. Extensive experiments on benchmark datasets show that our approach can train accurate sentiment classifier with less labeled samples.
منابع مشابه
Active Learning for Cross-domain Sentiment Classification
In the literature, various approaches have been proposed to address the domain adaptation problem in sentiment classification (also called cross-domain sentiment classification). However, the adaptation performance normally much suffers when the data distributions in the source and target domains differ significantly. In this paper, we suggest to perform active learning for cross-domain sentime...
متن کاملSentiment Domain Adaptation with Multiple Sources
Domain adaptation is an important research topic in sentiment analysis area. Existing domain adaptation methods usually transfer sentiment knowledge from only one source domain to target domain. In this paper, we propose a new domain adaptation approach which can exploit sentiment knowledge from multiple source domains. We first extract both global and domain-specific sentiment knowledge from t...
متن کاملActive Learning with Transfer Learning
In sentiment classification, unlabeled user reviews are often free to collect for new products, while sentiment labels are rare. In this case, active learning is often applied to build a high-quality classifier with as small amount of labeled instances as possible. However, when the labeled instances are insufficient, the performance of active learning is limited. In this paper, we aim at enhan...
متن کاملDynamic Parameter Adaptation of SVM Based Active Learning Methodology
In this paper we present experimental assessment of a dynamic adaptation of an approach for sentiment classification of tweets. Specifically, this approach enables a dynamic adaptation of the parameters used for three-class classification with a binary SVM classifier. The approach is suited for incremental active learning scenarios in domains with frequent concept alterations and changes. Our t...
متن کاملIncorporating Domain and Sentiment Supervision in Representation Learning for Domain Adaptation
Domain adaptation aims at learning robust classifiers across domains using labeled data from a source domain. Representation learning methods, which project the original features to a new feature space, have been proved to be quite effective for this task. However, these unsupervised methods neglect the domain information of the input and are not specialized for the classification task. In this...
متن کامل